Universal disinfectant for Coronavirus COVID-19

type: note | domain: technology | topic: backgrounders | lang: en | pub: 2020-03-09

This article allows you to make disinfectant yourself. Clean hands are one of the keys to not getting infected with COVID-19. What to do if you can't get disinfectants like water and soap when you are on the way and alcohol based disinfectants are sold out? How do you make hand sanitizers yourself? There are the recipes for disinfectant from the World Health Organization (WHO). They can be seen as acceptable and are used worldwide although the recipe is somewhat older (2009). This post is about the way to make these disinfectants for yourself, and the people around you, as a 1 litre amount. WHO "Formulation 1" is based on ethanol (EtOH) and "Formulation 2" is based on isopropanol (IPA). They are both effective against coronaviruses. You can use them as hand sanitizer and more general.

Warning: incorrect interpretations of this recipe are also in circulation. Therefore, Formulation 1 has been analysed and Formulation 2 has been determined empirically. It's a long line of reasoning that may be less interesting. I finish with the WHO recipes based on both mass and volume. If you have any additions or questions, feel free to respond. If disinfectants and hand sanitizers are scarce, this is one way to ensure hygiene. Make sure to read the warnings.

There is only one major drawback, alcohols are extremely flammable. Consider that risk and stay alert, with clean hands in a burn centre is the last thing you want. If you want to make disinfectant hand sanitizing yourself: I will not stop you, but read the entire article, take warnings very seriously. In other words, rather buy an existing available sanitizing liquid. Okay?

Obsessively disinfecting your hands all day is a bad idea, sterile hands are themselves prone to other infections. So you also have to think a bit, rather disinfect the handle of the shopping cart beforehand than disinfecting your hands afterwards. Get rid of the habit to touch your mouth, nose and eyes (with dirty hands). Stay away from sniffers and so on. Having said that, after using your hands in public places, you may want your hands disinfected and alcohol based cleaning is often the only thing available.

Warnings

Usage

The use is as hand sanitizer is easy, apply it on your hands, keep rubbing until everything has evaporated. Do not rub your hands on a towel, the liquid should be able to act for about 30 seconds. If you want to know what is effective against the COVID-19, or actually the family of coronaviruses, in a broader sense, you should consult this document.

Disinfecting objects: Similar, give it time to do the job. Dirt can be preprocessed be moisturising it first. You may want to use a solution without glycerol for this - glycerol residues themselves are also a pollution.

How does it work against bacteria and viruses?

In chemistry, "alcohol" is slightly different from the liquor store. Alcohols are a family of chemically related substances, including the "ethanol" and "isopropanol" used herein. The alcohol in spirits is "ethanol".

"More is better" is not always true, pure ethanol is not nearly as effective as ethanol to which water has been added. On the other hand, an ethanol solution of 70% or less is also less effective - so look closely at packaging of commercial products.

The water present is necessary to make cell walls of bacteria permeable to the alcohols. The alcohols eventually destroy the internal cell. A large part of the viruses, coronaviruses like COVID-19, is also sensitive to this disinfectant. More specifically, alcohol dissolves the protective fat layer and denatures - breaks down - the (genetic) proteins.

General considerations

Technical considerations

Reverse engineering of the WHO recipe

Or: What was the WHO reasoning?

Approach 1: The IPA solution

Because almost pure IPA is used in recipe 2, that is a starting point. I start easily.

Parts based on v/v: IPA 0.998, Water 0.002. Water part of 7515 ml: 0.002 * 7515 = 15 ml. So there is 7515 - 15 = 7500 ml IPA per 10000 ml. This corresponds exactly to 75% IPA. So WHO doesn't make things complex, beautiful!

Approach 2: The EtOH solution

Does approach 1 also apply to EtOH? Here is the check, pretending that the volume of the mixture does not shrink.

Parts based on v/v: EtOH 0.96, Water 0.04. Water portion of 8333 ml: 0.04 * 8333 = 333 ml. So there is 8333 - 333 = 8000 ml EtOh per 10000 ml. This corresponds exactly to 80% EtOH.

Conclusion

WHO mentions the percentage of alcohol, meaning to say: "Before it is mixed". The shrinkage of the mixture is not taken into account. To arrive at 10 liters, more additional liquid will therefore have to be added. That is the basis for the calculations below.

The conversion to mass

I have the shrinkage data for mixtures of ethanol and water, see the graph above, I do not have this for isopropanol and water. So analysis of the recipe with isopropanol is empiric.

Analysis of the EtOH recipe

Let's start with a 1-liter WHO recipe based on EtOH. That temporarily fits into a PET bottle with a tight-fitting cap, for example. When you're done, divide it into 50 ml bottles and the rest goes back into an empty alcohol bottle with a new label. Do everything outside and have extinguishers within reach.

So everything can now be summed up in a recipe.

Determination of the IPA recipe

The WHO isopropanol (IPA) disinfectant recipe is based on volume. Since data on the density of mixtures of water and IPA are lacking, I will start with kitchen tools myself. So there may be a limited margin of error. Then the WHO IPA recipe can be noted. As a final piece, I assembled some data found, in order to be able to offer a reasonable overview of mixtures of water and IPA.

Resume

Hands on

Conclusions with a reasonable tolerance

Additional data

It is extremely disappointing that this type of obvious data is behind the walls of publishers and is not public. Almost endless copyright and data paid by tax payers not being public, is a political choice of lawmakers, serving lobbyists, where a responsibility to protect community interests also lies with the citizen. The only option that remains is to collect data from various sources and combine it. My analysis is prone to relative small errors and concludes with 0.863 g/ml for 75% IPA. It is kept outside the definition points of the function.

The recipes for disinfectants

Adapted recipe based on 95 percent bio-ethanol

Substance Mass (gram) Mass (%) Volume (ml)
Bio-ethanol, 95% v/v 684 80 841
Water, boiled and cooled or sterile and distilled. 175 20 175
total 859 100 1000

Adapted recipe based on 99.9 percent isopropanol

Substance Mass (grams) Mass (%) Volume (ml)
Isopropanol, IPA, 99.9% v/v 590 68 750
Water, boiled and cooled or sterile and distilled. 273 32 273
total 863 100 1000